Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Lignocellulose depolymerization occurs via an environmentally adapted metabolic cascades in the wood-rotting basidiomycete Phanerochaete chrysosporium.

Identifieur interne : 000257 ( Main/Exploration ); précédent : 000256; suivant : 000258

Lignocellulose depolymerization occurs via an environmentally adapted metabolic cascades in the wood-rotting basidiomycete Phanerochaete chrysosporium.

Auteurs : Jin Seop Bak [Corée du Sud]

Source :

RBID : pubmed:25470354

Descripteurs français

English descriptors

Abstract

Plant biomass can be utilized by a lignocellulose-degrading fungus, Phanerochaete chrysosporium, but the metabolic and regulatory mechanisms involved are not well understood. A polyomics-based analysis (metabolomics, proteomics, and transcriptomics) of P. chrysosporium has been carried out using statistically optimized conditions for lignocellulolytic reaction. Thirty-nine metabolites and 123 genes (14 encoded proteins) that consistently exhibited altered regulation patterns were identified. These factors were then integrated into a comprehensive map that fully depicts all signaling cascades involved in P. chrysosporium. Despite the diversity of these cascades, they showed complementary interconnection among themselves, ensuring the efficiency of passive biosystem and thereby yielding energy expenditure for the cells. Particularly, many factors related to intracellular regulatory networks showed compensating activity in homeostatic lignocellulolysis. In the main platform of proactive biosystem, although several deconstruction-related targets (e.g., glycoside hydrolase, ureidoglycolate hydrolase, transporters, and peroxidases) were systematically utilized, well-known supporters (e.g., cellobiose dehydrogenase and ferroxidase) were rarely generated.

DOI: 10.1002/mbo3.228
PubMed: 25470354
PubMed Central: PMC4335982


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Lignocellulose depolymerization occurs via an environmentally adapted metabolic cascades in the wood-rotting basidiomycete Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Bak, Jin Seop" sort="Bak, Jin Seop" uniqKey="Bak J" first="Jin Seop" last="Bak">Jin Seop Bak</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, Advanced Biomass R&D Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, Advanced Biomass R&D Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701</wicri:regionArea>
<wicri:noRegion>305-701</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25470354</idno>
<idno type="pmid">25470354</idno>
<idno type="doi">10.1002/mbo3.228</idno>
<idno type="pmc">PMC4335982</idno>
<idno type="wicri:Area/Main/Corpus">000284</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000284</idno>
<idno type="wicri:Area/Main/Curation">000284</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000284</idno>
<idno type="wicri:Area/Main/Exploration">000284</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Lignocellulose depolymerization occurs via an environmentally adapted metabolic cascades in the wood-rotting basidiomycete Phanerochaete chrysosporium.</title>
<author>
<name sortKey="Bak, Jin Seop" sort="Bak, Jin Seop" uniqKey="Bak J" first="Jin Seop" last="Bak">Jin Seop Bak</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, Advanced Biomass R&D Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, Advanced Biomass R&D Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701</wicri:regionArea>
<wicri:noRegion>305-701</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">MicrobiologyOpen</title>
<idno type="eISSN">2045-8827</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biodegradation, Environmental (MeSH)</term>
<term>Energy Metabolism (MeSH)</term>
<term>Genes, Fungal (MeSH)</term>
<term>Lignin (metabolism)</term>
<term>Metabolome (MeSH)</term>
<term>Peroxides (metabolism)</term>
<term>Phanerochaete (genetics)</term>
<term>Phanerochaete (metabolism)</term>
<term>Polymerization (MeSH)</term>
<term>Proteome (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>Transcriptome (MeSH)</term>
<term>Wood (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Bois (MeSH)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Gènes fongiques (MeSH)</term>
<term>Lignine (métabolisme)</term>
<term>Métabolisme énergétique (MeSH)</term>
<term>Métabolome (MeSH)</term>
<term>Peroxydes (métabolisme)</term>
<term>Phanerochaete (génétique)</term>
<term>Phanerochaete (métabolisme)</term>
<term>Polymérisation (MeSH)</term>
<term>Protéome (MeSH)</term>
<term>Transcriptome (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Lignin</term>
<term>Peroxides</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Lignine</term>
<term>Peroxydes</term>
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Energy Metabolism</term>
<term>Genes, Fungal</term>
<term>Metabolome</term>
<term>Polymerization</term>
<term>Proteome</term>
<term>Signal Transduction</term>
<term>Transcriptome</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Bois</term>
<term>Dépollution biologique de l'environnement</term>
<term>Gènes fongiques</term>
<term>Métabolisme énergétique</term>
<term>Métabolome</term>
<term>Polymérisation</term>
<term>Protéome</term>
<term>Transcriptome</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plant biomass can be utilized by a lignocellulose-degrading fungus, Phanerochaete chrysosporium, but the metabolic and regulatory mechanisms involved are not well understood. A polyomics-based analysis (metabolomics, proteomics, and transcriptomics) of P. chrysosporium has been carried out using statistically optimized conditions for lignocellulolytic reaction. Thirty-nine metabolites and 123 genes (14 encoded proteins) that consistently exhibited altered regulation patterns were identified. These factors were then integrated into a comprehensive map that fully depicts all signaling cascades involved in P. chrysosporium. Despite the diversity of these cascades, they showed complementary interconnection among themselves, ensuring the efficiency of passive biosystem and thereby yielding energy expenditure for the cells. Particularly, many factors related to intracellular regulatory networks showed compensating activity in homeostatic lignocellulolysis. In the main platform of proactive biosystem, although several deconstruction-related targets (e.g., glycoside hydrolase, ureidoglycolate hydrolase, transporters, and peroxidases) were systematically utilized, well-known supporters (e.g., cellobiose dehydrogenase and ferroxidase) were rarely generated. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25470354</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>10</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2045-8827</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>4</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2015</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>MicrobiologyOpen</Title>
<ISOAbbreviation>Microbiologyopen</ISOAbbreviation>
</Journal>
<ArticleTitle>Lignocellulose depolymerization occurs via an environmentally adapted metabolic cascades in the wood-rotting basidiomycete Phanerochaete chrysosporium.</ArticleTitle>
<Pagination>
<MedlinePgn>151-66</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/mbo3.228</ELocationID>
<Abstract>
<AbstractText>Plant biomass can be utilized by a lignocellulose-degrading fungus, Phanerochaete chrysosporium, but the metabolic and regulatory mechanisms involved are not well understood. A polyomics-based analysis (metabolomics, proteomics, and transcriptomics) of P. chrysosporium has been carried out using statistically optimized conditions for lignocellulolytic reaction. Thirty-nine metabolites and 123 genes (14 encoded proteins) that consistently exhibited altered regulation patterns were identified. These factors were then integrated into a comprehensive map that fully depicts all signaling cascades involved in P. chrysosporium. Despite the diversity of these cascades, they showed complementary interconnection among themselves, ensuring the efficiency of passive biosystem and thereby yielding energy expenditure for the cells. Particularly, many factors related to intracellular regulatory networks showed compensating activity in homeostatic lignocellulolysis. In the main platform of proactive biosystem, although several deconstruction-related targets (e.g., glycoside hydrolase, ureidoglycolate hydrolase, transporters, and peroxidases) were systematically utilized, well-known supporters (e.g., cellobiose dehydrogenase and ferroxidase) were rarely generated. </AbstractText>
<CopyrightInformation>© 2014 The Author. MicrobiologyOpen published by John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bak</LastName>
<ForeName>Jin Seop</ForeName>
<Initials>JS</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Biomolecular Engineering, Advanced Biomass R&D Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>12</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Microbiologyopen</MedlineTA>
<NlmUniqueID>101588314</NlmUniqueID>
<ISSNLinking>2045-8827</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010545">Peroxides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>11132-73-3</RegistryNumber>
<NameOfSubstance UI="C036909">lignocellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004734" MajorTopicYN="N">Energy Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005800" MajorTopicYN="N">Genes, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055442" MajorTopicYN="N">Metabolome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010545" MajorTopicYN="N">Peroxides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058105" MajorTopicYN="N">Polymerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="N">Proteome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Bioconversion</Keyword>
<Keyword MajorTopicYN="N">Phanerochaete chrysosporium</Keyword>
<Keyword MajorTopicYN="N">biofuels</Keyword>
<Keyword MajorTopicYN="N">lignocellulose</Keyword>
<Keyword MajorTopicYN="N">metabolic networks</Keyword>
<Keyword MajorTopicYN="N">systems biology</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>05</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>11</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>11</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>12</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>12</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>10</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25470354</ArticleId>
<ArticleId IdType="doi">10.1002/mbo3.228</ArticleId>
<ArticleId IdType="pmc">PMC4335982</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2000 Aug 18;275(33):25057-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10816601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1995 Dec 15;83(6):1011-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8521501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1995 Dec;11(16):1575-611</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8720066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9843981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Apr 1;21(7):1280-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15546938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Clin Pathol. 2005 Jul;124(1):71-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15923166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):726-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16407097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2006 Jun;188(11):3849-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16707677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14664-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16984999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2007 Jul;25(7):759-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17572667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2008 May;74(9):2709-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18310430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2008 Jun;7(6):2342-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18435559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Nov;36(19):6187-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18824477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2009 Feb;100(3):1285-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18930388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2008 Dec;74(23):7252-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18849459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2008;8:285</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18854028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2009 Oct;100(19):4374-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19427784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2009 Jun;55(3):273-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19396602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2009 Oct 15;104(3):471-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19591194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biol Sci. 2009;5(6):578-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19774110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Apr 20;49(15):3305-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20230050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Jun;76(11):3599-610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20400566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Biotechnol. 2010 Sep 30;27(4):424-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20206309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2011 May;4(3):377-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21502663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jun 23;474(7352):S12-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21697834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15079-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21876164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Oct;77(19):7007-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21821740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5458-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22434909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6012-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22474347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Mar 15;339(6125):1323-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23429703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2014 Jan;16(1):265-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24119015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014;9(2):e87959</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24505339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2015 Feb;37(2):349-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25257591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2002 Aug;9(8):856-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12107828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1994 Aug;176(16):4838-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8050996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2002 May-Jun;18(3):489-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12052064</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Corée du Sud</li>
</country>
</list>
<tree>
<country name="Corée du Sud">
<noRegion>
<name sortKey="Bak, Jin Seop" sort="Bak, Jin Seop" uniqKey="Bak J" first="Jin Seop" last="Bak">Jin Seop Bak</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000257 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000257 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25470354
   |texte=   Lignocellulose depolymerization occurs via an environmentally adapted metabolic cascades in the wood-rotting basidiomycete Phanerochaete chrysosporium.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25470354" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020